GMN: Georgian Medical News is peer-reviewed, published monthly journal committed to promoting the science and art of medicine and the betterment of public health, published by the GMN Editorial Board since 1994. GMN carries original scientific articles on medicine, biology and pharmacy, which are of experimental, theoretical and practical character; publishes original research, reviews, commentaries, editorials, essays, medical news, and correspondence in English and Russian.

GMN is indexed in MEDLINE, SCOPUS, PubMed and VINITI Russian Academy of Sciences. The full text content is available through EBSCO databases.

GMN: Медицинские новости Грузии - ежемесячный рецензируемый научный журнал, издаётся Редакционной коллегией с 1994 года на русском и английском языках в целях поддержки медицинской науки и улучшения здравоохранения. В журнале публикуются оригинальные научные статьи в области медицины, биологии и фармации, статьи обзорного характера, научные сообщения, новости медицины и здравоохранения. Журнал индексируется в MEDLINE, отражён в базе данных SCOPUS, PubMed и ВИНИТИ РАН. Полнотекстовые статьи журнала доступны через БД EBSCO.

GMN: Georgian Medical News – საქართველოს მედიცინური მუშაობის სახელოვანი ჟურნალი - არის ფილატელიზებული მუშაობის სახელოვანი ჟურნალი, შედგება GMN ედიციულის რედაქციის მიერ 1994 წლიდან. GMN წლიური ჯურნალი მატერიალები შედგება მედიცინაში, ფარმაციაში და ბიოლოგიაში. GMN-ის ყელის და გამჭვირვალობის შეპირობა ფუნქციები შეესაბამება შეყვანილ მეთოდებს. ჟურნალში გამოცემები შედგება სამედიცინო ფარმაცევტურ მასწავლებლების, მეთოდების და ფონდების სამსახურში.

GMN: Georgian Medical News - ნივთიერთობაში მედიცინური მუშაობის სახელოვანი ჟურნალი - არის ფილატელიზებული მუშაობის სახელოვანი ჟურნალი, შედგება GMN ედიციულის რედაქციის მიერ 1994 წლიდან. GMN წლიური ჯურნალი მატერიალები შედგება მედიცინაში, ფარმაციაში და ბიოლოგიაში. GMN-ის ყელის და გამჭვირვალობის შეპირობა ფუნქციები შეესაბამება შეყვანილ მეთოდებს. ჟურნალში გამოცემები შედგება სამედიცინო ფარმაცევტურ მასწავლებლების, მეთოდების და ფონდების სამსახურში.

WEBSITE
www.geomednews.com
К СВЕДЕНИЮ АВТОРОВ!

При направлении статьи в редакцию необходимо соблюдать следующие правила:

1. Статья должна быть представлена в двух экземплярах, на русском или английском языках, напечатанная через полтора интервала на одной стороне стандартного листа с шириной левого поля в три сантиметра в три сантиметра. Используемый компьютерный шрифт для текста на русском и английском языках - Times New Roman (Кириллица), для текста на грузинском языке следует использовать AcadNusx. Размер шрифта - 12. К рукописи, напечатанной на компьютере, должен быть приложен CD со статьей.

2. Размер статьи должен быть не менее десяти и не более двадцати страниц машинописи, включая указатель литературы и резюме на английском, русском и грузинском языках.

3. В статье должны быть освещены актуальность данного материала, методы и результаты исследования и их обсуждение.

При представлении в печать научных экспериментальных работ авторы должны указывать вид и количество экспериментальных животных, применяющиеся методы обезболивания и усыпления (в ходе острых опытов).

4. К статье должны быть приложены краткое (на полстраницы) резюме на английском, русском и грузинском языках (включающее следующие разделы: цель исследования, материал и методы, результаты и заключение) и список ключевых слов (key words).

5. Таблицы необходимо представлять в печатной форме. Фотокопии не принимаются. Все цифровые, итоговые и процентные данные в таблицах должны соответствовать таковым в тексте статьи. Таблицы и графики должны быть озаглавлены.

6. Фотографии должны быть контрастными, фотокопии с рентгенограмм - в позитивном изображении. Рисунки, чертежи и диаграммы следует озаглавить, пронумеровать и вставить в соответствующее место текста в tiff формате.

В подписях к микрофотографиям следует указывать степень увеличения через окуляр или объектив и метод окраски или импрегнации срезов.

7. Фамилии отечественных авторов приводятся в оригинальной транскрипции.

В конце каждой оригинальной статьи приводится библиографический список. В список литературы включаются все материалы, на которые имеются ссылки в тексте. Список составляется в алфавитном порядке и нумеруется. Литературный источник приводится на языке оригинала. В списке литературы сначала приводятся работы, написанные знаками грузинского алфавита, затем кириллицей и латиницей. Ссылки на цитируемые работы в тексте статей даются в квадратных скобках в виде номера, соответствующего номеру данной работы в списке литературы. Большинство цитированных источников должны быть за последние 5-7 лет.

9. Для получения права на публикацию статья должна иметь от руководителя работы или учреждения визу и сопроводительное отношение, написанные или напечатанные на бланке и заверенные подписью и печатью.

10. В конце статьи должны быть подписи всех авторов, полностью приведены их фамилии, имена и отчества, указаны служебный и домашний номера телефонов и адреса или иные координаты. Количество авторов (соавторов) не должно превышать пяти человек.

11. Редакция оставляет за собой право сокращать и исправлять статьи. Корректура авторам не высылается, вся работа и сверка проводится по авторскому оригиналу.

12. Недопустимо направление в редакцию работ, представленных к печати в иных издательствах или опубликованных в других изданиях.

При нарушении указанных правил статьи не рассматриваются.
REQUIREMENTS

Please note, materials submitted to the Editorial Office Staff are supposed to meet the following requirements:

1. Articles must be provided with a double copy, in English or Russian languages and typed or computer-printed on a single side of standard typing paper, with the left margin of 3 centimeters width, and 1.5 spacing between the lines, typeface - Times New Roman (Cyrillic), print size - 12 (referring to Georgian and Russian materials). With computer-printed texts please enclose a CD carrying the same file titled with Latin symbols.

2. Size of the article, including index and resume in English, Russian and Georgian languages must be at least 10 pages and not exceed the limit of 20 pages of typed or computer-printed text.

3. Submitted material must include a coverage of a topical subject, research methods, results, and review.

Authors of the scientific-research works must indicate the number of experimental biological species drawn in, list the employed methods of anesthetization and soporific means used during acute tests.

4. Articles must have a short (half page) abstract in English, Russian and Georgian (including the following sections: aim of study, material and methods, results and conclusions) and a list of key words.

5. Tables must be presented in an original typed or computer-printed form, instead of a photocopied version. Numbers, totals, percentile data on the tables must coincide with those in the texts of the articles. Tables and graphs must be headed.

6. Photographs are required to be contrasted and must be submitted with doubles. Please number each photograph with a pencil on its back, indicate author’s name, title of the article (short version), and mark out its top and bottom parts. Drawings must be accurate, drafts and diagrams drawn in Indian ink (or black ink). Photocopies of the X-ray photographs must be presented in a positive image in tiff format.

Accurately numbered subtitles for each illustration must be listed on a separate sheet of paper. In the subtitles for the microphotographs please indicate the ocular and objective lens magnification power, method of coloring or impregnation of the microscopic sections (preparations).

7. Please indicate last names, first and middle initials of the native authors, present names and initials of the foreign authors in the transcription of the original language, enclose in parenthesis corresponding number under which the author is listed in the reference materials.

In GMN style for each work cited in the text, a bibliographic reference is given, and this is located at the end of the article under the title “References”. All references cited in the text must be listed. The list of references should be arranged alphabetically and then numbered. References are numbered in the text [numbers in square brackets] and in the reference list and numbers are repeated throughout the text as needed. The bibliographic description is given in the language of publication (citations in Georgian script are followed by Cyrillic and Latin).

9. To obtain the rights of publication articles must be accompanied by a visa from the project instructor or the establishment, where the work has been performed, and a reference letter, both written or typed on a special signed form, certified by a stamp or a seal.

10. Articles must be signed by all of the authors at the end, and they must be provided with a list of full names, office and home phone numbers and addresses or other non-office locations where the authors could be reached. The number of the authors (co-authors) must not exceed the limit of 5 people.

11. Editorial Staff reserves the rights to cut down in size and correct the articles. Proof-sheets are not sent out to the authors. The entire editorial and collation work is performed according to the author’s original text.

12. Sending in the works that have already been assigned to the press by other Editorial Staffs or have been printed by other publishers is not permissible.

Articles that Fail to Meet the Aforementioned Requirements are not Assigned to be Reviewed.
1. სტატია იუნი წარმოდგენილი 2 გზით, რომლებიც ან ინგლისურ გრამატიკულ სიართოვნების 1 გზით, 3 მა სავარაუდო დარგების სრული სიართოვნები, ორგანოს აქტუალური დღევანდელი პროცესი, რომლებიც ძირითად და ინფორმაციური თემებში - Times New Roman (ქირილიკა), სხვა სახის სუფთა მნიშვნელობის შატომ, ალგორითმური პროცესი - AcadNusx. სიფრენის ხელოვანი – 12. სტატიის თითო უნდა იქცო ჩვენი CD ჰიპოთეზა.

2. სტატიის შეტანისათვის არ უნდა შეადგენდეს 10 გზით, ლურჯ და ჭიანჭვალა სიართოვნების 1 გზით, 3 მა სავარაუდო დარგების, სავარაუდო გარდაქმნის 1 გზით, რომლებიც ძირითად და ინფორმაციური თემებში - Times New Roman (ქირილიკა), სხვა სახის სუფთა მნიშვნელობის შატომ, ალგორითმური პროცესი - AcadNusx. სიფრენის ხელოვანი – 12. სტატიის თითო უნდა იქცო ჩვენი CD ჰიპოთეზა.

3. სტატიის შეტანისათვის რუკათი, ფოტოები, მხატვრობის სახელი, პერანგები, სხვა სახის სუფთა მნიშვნელობის შატომ, ალგორითმური პროცესი - AcadNusx. სიფრენის ხელოვანი – 12. სტატიის თითო უნდა იქცო ჩვენი CD ჰიპოთეზა.

4. სტატიის თითო უნდა იქცო ჩვენი CD ჰიპოთეზა.

5. რუკათი, ფოტოები, მხატვრობის სახელი, პერანგები.

6. სტატიის მნიშვნელობის შატი, პერანგები, სხვა სახის სუფთა მნიშვნელობის შატი.

7. სტატიის მნიშვნელობის შატი, პერანგები.

8. სტატიის ერთ უნდა იქცო ჩვენი CD ჰიპოთეზა.

9. სტატიის ერთ უნდა იქცო ჩვენი CD ჰიპოთეზა.

10. სტატიის ერთ უნდა იქცო ჩვენი CD ჰიპოთეზა.

11. სტატიის ერთ უნდა იქცო ჩვენი CD ჰიპოთეზა.

12. სტატიის ერთ უნდა იქცო ჩვენი CD ჰიპოთეზა.
Applications of viscoelastic testing in microsurgery: A systematic review and meta-analysis

Long-term use of glucocorticoid modulated parathyroid hormone levels in osteoporosis patients

Results of treatment of deep veins thrombosis in patients with congenital anomalies of the inferior vena cava

Prevalence of Chlamydia among women in places of deprivation of liberty

Effect of heat treatment duration and cooling conditions on tensile properties and hardness of selective-laser-melted cobalt-chromium alloy

Diabetes mellitus and COVID-19: Today’s challenges

Metformin effects on blood levels of gremlin-1 in polycystic ovarian women

Study of the hemomicrocirculatory channel in patients with diabetes and threatening ischemia of the lower limb

Study of the liver and kidney function within COVID-19 patients

Study of VDR FOKL RS2228570 SNP in autoimmune thyroiditis

Justification of the comprehensive program of prevention of hypertension disease in medical workers
Rurua Magda, Ratiani L, Sanikidze T, Machvariani K, Pachkoria E, Ormocadze G, Mikadze I, Didbaridze T.
IMPACT OF THE ANGIOTENSIN-CONVERTING ENZYME (ACE) INHIBITORS ON THE COURSE OF THE SEPTIC SHOCK DEVELOPED DURING COVID-19 AND OTHER SEVERE RESPIRATORY INFECTIONS IN PRESENCE OF HYPERFERRITINEMIA……………………………………………………………………………...…………..110-117

Dubivska SS, Omelchenko-Seliukova AV, Lazyrskyi VO, Viedienieva RY.
STUDY OF THE PROCESSES OF LIPID PEROXIDATION, THE STATE OF THE ANTIOXIDANT SYSTEM IN PATIENTS WITH POLYTRAUMA AND ALCOHOL ANAMNESIS……………………………………………………………………………………………………….118-124

INFLUENCE OF LONG-TERM VIBRATION ON THE ACTIVITY OF THE SUPERIOR VESTIBULAR NUCLEUS NEURONS UNDER THE CONDITIONS OF STIMULATION OF THE HYPOTHALAMUS NUCLEI…………………………………………………………………………………………………….125-131

Ahmad Mohammed SMADI, Salam Bani Hani, Abedalmajeed SHAJRAWI, Marwa Alhalabi.
COMPLIANCE AND CHALLENGES OF TRANSMISSION BASED PRECAUTION PRACTICES AMONG NURSES IN JORDANIAN HOSPITALS DURING THE NOVEL COVID-19: A DESCRIPTIVE STUDY……………………………………………………………………………………………………….132-137

Georgi Tchernev.
THE NITROSAMINE CONTAMINATION IN BETA BLOCKERS (BISOPROLOL/ METOPROLOL), ACE INHIBITORS (LISINOPRIL/ PERINDOPRIL), THIAZIDES DIURETICS (HCT), CALCIUM CHANNEL BLOCKERS (AMLODIPINE/ FELODIPINE), SARTANS (CANDESARTAN) AND THE SUBSEQUENT SKIN CANCER DEVELOPMENT AND PROGRESSION: APOCALYPSE NOW….138-145

MOLECULAR EFFECTS OF RESVERATROL IN THE TREATMENT OF AUTOIMMUNE DISEASES……………………………………………………………………………………………………….146-147
SERUM LIPOCALIN-2, AND FETUIN-A LEVELS IN PATIENTS WITH ALZHEIMER’S DISEASE

Mahde S. Hamad1, Athraa Essa Ahmed2, Shaimaa Essa Ahmed1, Entedhar R. Sarhat1*, Moayad M. Al Anzy3.

1College of Dentistry, Tikrit University, Tikrit, Iraq.
2College of Medicine, Tikrit University, Tikrit, Iraq.
3College of Pharmacy/ Collage of Veterinary Medicine, Tikrit University, Tikrit, Iraq.

Abstract.

Alzheimer's disease is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. The authors of the present study aimed to investigate the levels of serum lipocalin-2, fetuin-A, and TNF-α in patients with Alzheimer’s disease.

Patients and Methods: 56 patients with Alzheimer’s disease (the first group), and another 25 healthy volunteers (control group) were enrolled in this cross-sectional study. The serum levels of lipocalin-2, fetuin-A, and Tumor necrosis factor (TNF-α) were determined with the use of the ELISA method.

Results: There was a significant elevation in serum lipocalin-2, and TNF-α levels in the AD group (88.68±32.1) and(42.28±5.05) respectively, compared to the control group (63±28.5), and (35.19±5.07) respectively, [p< 0.001]. A significant increase in serum concentration of lipocalin, TNFα with a reduction of fetuin-A could be considered an important phenomenon used for follow-up or prognosis and diagnosis of Alzheimer's disease.

Key words. Lipocalin-2, TNFa, Fetuin-A, Alzheimer’s disease.

Introduction.

Alzheimer's disease, a debilitating neurodegenerative disorder, stands as one of the most prominent forms of dementia worldwide, with an estimated 44 million people affected by its unforgiving grasp. Regrettably, this chronic and progressive condition is currently untreatable, and its multifactorial nature only adds to the complexity of finding a cure. The ramifications of Alzheimer's disease are far-reaching, affecting not only the afflicted individual but also their loved ones who watch as their memories fade and their cognitive abilities decline. As the world's population continues to age, the impact of Alzheimer's disease is only set to increase, making it a critical area of research and medical attention [1,2].

Alzheimer's disease (AD) is the most common subtype of dementia in the elderly, but there are still no curative options [3]. Alzheimer's disease (AD), a progressive and irreversible neurodegenerative disorder, is extensively characterized by the accumulation of two major pathological hallmarks in the brain cortex and hippocampus: amyloid-β peptide and tau protein. These abnormal protein deposits cause a complex cascade of pathophysiological events, including altered production, aggregation, and clearance of amyloid-β peptide, and hyperphosphorylation of tau protein, which leads to the formation of neurofibrillary tangles. In addition, these pathological processes trigger a local inflammatory response that contributes to neuronal destruction and tissue atrophy. The intricate interplay of these events ultimately leads to the gradual deterioration of cognitive functions in AD patients, affecting their memory, thinking, and behaviour, and severely impacting their quality of life and that of their families [4,5].

In recent years, there has been a significant shift in the way white adipose tissue (WAT) is perceived. It is no longer viewed as a mere storage organ that responds solely to afferent signals from hormone systems and the central nervous system. Rather, it is now widely recognized that WAT is a complex organ that is capable of producing a plethora of bioactive substances, including cytokines and hormones, collectively known as adipokines. These adipokines include leptin, visfatin, resistin, sex steroids, plasminogen activator inhibitor-1, proteins of the renin-angiotensin system, and acylation-stimulating protein. Their role is not limited to physiological functions but also extends to inflammatory processes, thereby highlighting their involvement in the pathophysiology of various diseases. This new understanding of WAT and its multifaceted functions has opened doors to a plethora of research opportunities and therapeutic interventions [6-8].

Lipocalin-2, the fascinating and versatile adipose tissue-derived cytokine, which is also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), is a 25-kDa glycoprotein of immense importance, belonging to the lipocalin subfamily of small, secreted proteins that bind hydrophobic molecules, including retinoids, fatty acids, and various steroids. This remarkable molecule is known for its unique structure that contains eight beta-strands that form a β-barrel in a closed cup, which plays an essential role in its multifaceted functions and biological activities. From regulating iron metabolism to serving as a biomarker for various diseases, Lipocalin-2 continues to captivate researchers and medical professionals alike with its intriguing properties and potential therapeutic applications [9-11]. LCN2, also known as Lipocalin-2, is a fascinating adipose tissue-derived cytokine that plays a significant role in the immune system. This protein's expression is induced by a multitude of pro- and anti-inflammatory cytokines and factors, such as lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α), IL-1β, IL-6, or IL-17, in a variety of cell types. LCN2 is involved in a variety of physiological and pathological processes, including inflammation, infection, immunity, and cancer. This protein's ability to modulate the immune response and regulate the inflammatory process has piqued the interest of researchers worldwide. Its multifaceted roles and complex interactions with other proteins make it an intriguing subject for further study in the field of immunology [12].

Fetuin-A, a remarkable protein with a multitude of functions, is also known as α-2 Heremans-Schmid glycoprotein (AHSG) - a member of the cystatin superfamily of protease inhibitors.
This phosphorylated glycoprotein, which is comprised of three O-linked and two N-linked oligosaccharide chains, is a crucial member of the fetuin group of serum-binding proteins. Originating from the liver, fetuin-A is a major human secretory protein that plays a significant role in various biological functions, both normal and pathological. Among its many functions, fetuin-A is responsible for regulating bone metabolism, controlling protease activity, inhibiting vascular calcification, and promoting insulin resistance. Additionally, this protein is involved in the proliferation signaling of breast tumour cells and the migration of keratinocytes [13,14]. Fetuin-A, an intriguing and multifunctional glycoprotein, is predominantly synthesized by the liver, but it also has a presence in other human organs including the kidneys and the tongue. The synthesis of this vital protein is known to be downregulated by proinflammatory cytokines such as TNF, which is why it is classified as a negative acute-phase protein. This protein plays a crucial role in various physiological processes such as the regulation of mineralization and bone development, insulin signalling, and inflammation. Despite being discovered decades ago, researchers are still exploring the potential of Fetuin-A in various medical fields, making it a subject of great interest and importance [15,16]. Our study focuses on estimating the concentration of the lipocalin-2, Fetuin-A, and Tumor necrosis factor (TNF), in patients with AD.

Materials and methods.

The present study was carried out at the Research Center in Tikrit University. This study was performed on 112 individuals, 56 patients diagnosed with AD (20 men, 36 women), with a mean age of 79.4±5.0 years in the Kirkuk General Hospital of the Department of internal medicine, in Kirkuk governorates and 60 control healthy individuals (25 men, 31 women), matched for sex and age 78.7±4.0 between February 2020 to December 2021. Upon arrival at the healthcare facility, every patient was greeted by a friendly and compassionate staff member who provided them with a special questionnaire form. This form was designed to gather vital information about the patient's medical history and current condition to help the medical team provide the best possible care. The questionnaire included various fields that needed to be filled out such as the patient's name, address, gender, age, and any blood or genetic diseases they may have. Additionally, the patient's occupation was also included to help the medical team understand the potential impact of the patient's work on their health. However, the control group had some exclusion criteria that needed to be met to participate in the study. These criteria included the absence of concurrent neurological issues, severe anaemia, severe malnutrition, mental deficiency, severe and unchecked arterial hypertension, concurrent psychiatric issues or a history of psychological illness, cancer, HIV-AIDS, stroke, and alcoholism. By ensuring that the control group met these criteria, the medical team could accurately assess the efficacy of the treatment being studied and provide valuable insights into the best practices for patient care.

With the utmost care and precision, the researchers collected five millilitres of venous blood samples from both the control group of healthy volunteers and the patients, ensuring that the process was as minimally invasive as possible. The samples were then delicately transferred into test tubes, where they were left to clot under carefully controlled conditions. After a thorough clotting process, the samples were then subjected to a centrifugation process at 5000 rounds per minute for ten minutes to achieve optimal separation. Finally, the sera were delicately extracted and stored with the utmost care until they were ready to be assayed for laboratory investigations, marking a significant milestone in the researchers' quest for a deeper understanding of the human body's inner workings.

Levels of lipocalin-2, fetuin-A and TNF-α were measured with enzyme-linked immunosorbent assay (ELISA) kits BioPorto Diagnostics, Denmark).

In the realm of data analysis, the statistical package of social science (SPSS) version 23.0 for Windows was utilized to perform a comprehensive analysis of the dataset. To better understand the numerical variables, the means were calculated and presented alongside T-Test results for comparison between categorical variables. The selected level of significance for P values was set at less than 0.05, ensuring that only the most significant results were reported. Through this rigorous analysis, valuable insights were gained, and a deeper understanding of the data was achieved.

Results.

Clinical and laboratory characteristics of all patients with AD and healthy control subjects and a comparison between all groups are given in Table 1. A total of 56 patients (20 males, 36 females), of mean age 79.4±5.0 years, and 56 age- and sex-matched healthy controls were enrolled in this study.

Serum lipocalin-2 and TNF-α levels were significantly higher in the AD group (88.68±32.1) and (42.28±5.05) respectively, than in the healthy control group (63±28.5), and (35.19±5.07) respectively [P<0.001]. Fetuin-A was significantly lower in the AD group (109.5±10.8) than in the control group (128.4±16.5), [p<0.001].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AD group (n=56)</th>
<th>Control group (n=56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>79.4±5.0</td>
<td>78.7±4.0</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>20/36</td>
<td>25/31</td>
</tr>
</tbody>
</table>

Table 2. Biochemical parameters of study groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>AD</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipocalin-2 (ng/mL)</td>
<td>88.68±32.1*</td>
<td>63±28.5</td>
</tr>
<tr>
<td>TN-α</td>
<td>42.28±5.05*</td>
<td>35.19±5.07</td>
</tr>
<tr>
<td>Fetuin-A (ng/ml)</td>
<td>109.5±10.8</td>
<td>128.4±16.5*</td>
</tr>
</tbody>
</table>

*P < 0.001

Discussion.

Lipocalin-2, a protein that has recently been discovered to be secreted by adipocytes, has been found to act as both an autocrine and paracrine adipokine. This fascinating protein has been shown to have an antagonistic effect on the activity of inflammatory molecules, which play a key role in the development of inflammation, and also in the secretion of other adipokines. This means that Lipocalin-2 has the potential to...
act as a powerful regulator of the inflammatory response in adipose tissue, which could have important implications for the treatment of obesity and related metabolic disorders. In short, Lipocalin-2 is a truly novel and fascinating protein that is poised to revolutionize our understanding of adipose tissue biology and metabolic disease [17].

The LCN2 protein, a multifunctional protein that plays a pivotal role in various physiological processes, is capable of passing through the blood-brain barrier and entering the central nervous system (CNS) either actively or passively. Even though NGAL mRNA and protein are typically expressed at low levels in the brain under normal physiological conditions, the LCN2 gene expression is regulated by glucocorticoids, which are critical regulators of cognitive function. Moreover, LCN2 acts as an acute phase mediator in the CNS and serves as a potential protective factor in response to systemic inflammation. This finding is particularly significant given that inflammation has been linked to numerous neurodegenerative disorders, and the identification of new protective factors in the CNS may pave the way for novel therapeutic interventions that help prevent or alleviate these debilitating conditions [18-20].

The intricate workings of the central nervous system (CNS) have long been a subject of fascination for researchers seeking to understand the underlying mechanisms of various neurological disorders. One such disorder, Alzheimer's disease (AD), is closely linked to the presence of LCN2, a protein that promotes neuronal death and reactive gliosis while triggering insulin resistance (IR) in the CNS. Notably, postmortem brain regions affected by AD pathology, particularly the hippocampus, show robust increases in NGAL protein levels, further implicating LCN2 in the disease's progression. It is believed that LCN2-mediated neuronal sensitivity to toxicity in AD may be due in part to impaired clearance of this molecule from the brain, a phenomenon that has also been suggested in relation to Aβ1-42. These findings shed light on the complex interplay between various proteins and molecules in the CNS and hold promise for the development of targeted therapies to combat the devastating effects of AD [23].

The intricate web of biological mechanisms underlying the progression of Alzheimer's disease (AD) has been extensively studied, with mounting evidence suggesting the involvement of altered LCN (lipocalin) receptors and elevated levels of LCN2 in the central nervous system (CNS). These molecular changes may contribute to the pathogenesis of AD, including neuronal cell death, glia activation, and insulin resistance (IR), which are all hallmarks of this debilitating neurodegenerative disorder. In light of this, our present study aimed to shed further light on the role of LCN2 in AD progression by examining its levels in the serum of patients with AD compared to healthy controls [24]. Interestingly, our findings revealed a significant increase in serum LCN2 levels in patients with AD as compared to the control group, providing further evidence to support the involvement of LCN2 in AD pathogenesis. This finding is consistent with previous studies, such as the one conducted by Jang et al, which reported higher levels of LCN2 in AD patients, thus bolstering the case for its potential use as a biomarker for AD diagnosis and prognosis. These results underscore the importance of continued research into the complex molecular mechanisms underlying AD, with a particular focus on the role of LCN2 and related pathways, to develop more effective therapies and diagnostics for this devastating disease [21]. Choi et al. [23] stated that LCN2 triggers inflammation, and subsequently reduces cognitive function. Mucha et al and Bi F et al reported that astrocytes in neurodegenerative conditions are the main producers of NGAL, while psychological stress might mostly trigger NGAL expression in neurons [18,20].

Tumour necrosis factor (TNF) is a fascinating and complex pleiotropic pro-inflammatory cytokine that is produced by a variety of cells including adipocytes, neutrophils, activated lymphocytes, macrophages, and null killer cells and serves as a crucial mediator in a vast array of inflammatory disorders and neurodegenerative diseases such as Parkinson's disease and AD, making it a major focus of research in the medical community. Despite its important role in the body's immune response, TNF can also have detrimental effects on the body when produced in excess, leading to chronic inflammation and tissue damage, which has inspired a multitude of studies aimed at regulating and controlling TNF levels to combat these negative outcomes [25,26]. As an important pro-inflammatory cytokine, TNF-α plays a pivotal role in regulating the immune system and contributing to the pathogenesis of various inflammatory disorders. One of its most significant roles is interfering with insulin signalling in a variety of non-insulin-producing cells, which results in insulin resistance and impaired glucose uptake, ultimately leading to the development of type 2 diabetes mellitus. Moreover, TNF-α is known to initiate the acute phase response, which is a complex cascade of events that occurs in response to tissue injury, infection, or inflammation, and involves the release of various cytokines and acute-phase proteins. TNF-α also induces a second wave of cytokines, including IL-6, IL-8, and C-reactive protein, which further amplify the inflammatory response and contribute to tissue damage and dysfunction. Interestingly, TNF-α is expressed not only by immune cells but also by microglia, astrocytes, and neurons in the central nervous system. Genetic polymorphisms associated with TNF up-regulation have been linked to increased susceptibility to Alzheimer's disease, suggesting that chronic low-grade inflammation mediated by TNF-α may contribute to the pathogenesis of this debilitating neurodegenerative disorder [27,28]. In a recent study, it was discovered that the combination of TNF-alpha and gamma-interferon has the ability to trigger the production of Aβ, a peptide notoriously linked to the development of Alzheimer's disease. Surprisingly, it was also found that Beta-amyloid, another protein involved in Alzheimer's pathogenesis, has the potential to activate microglial inflammatory pathways, which ultimately leads to neurotoxicity. This neurotoxicity is mediated by TNF-alpha, a cytokine produced by reactive microglia and monocytes, and is thought to contribute to the progressive neuronal loss seen in Alzheimer's disease. The discovery of the complex interplay between these proteins and cells provides a new avenue for potential therapeutic targets in the treatment of Alzheimer's disease [29].
The present study showed an increase in serum levels of TNF-α in AD vs the control group. This study is also in accordance with the results of Montgomery et al. [29], who reported that protein-related TNF-α inhibitors that modulate circulating TNF-α levels, such as etanercept and infliximab, have shown limited promise in altering the course of AD, because of their inability to efficiently traverse the blood-brain barrier [30]. In the study serum Fetuin-A levels were found significantly lower in AD patients compared to the control group. The results of previous studies [31,32] were parallel with our results. Fetuin-A is a cysteine protease inhibitor. Fetuin-A is an anti-inflammatory glycoprotein that declined during the systemic inflammatory process that is to say it is a negative acute phase reactant but remains controversial [33]. Among its biological effects, fetuin-A suppresses insulin sensitivity by inhibiting tyrosine kinase activity and auto-phosphorylation of insulin receptors [34]. As a result of these findings, it is suggested fetuin-A might play a role in the development of AD. Laughlin et al. [35], reported that anti-inflammatory attributes of Fetuin-A, it was also found to be neuroprotective and low Fetuin-A concentrations were associated with more severe cognitive decline in Alzheimer's disease patients. Recent studies have focused on the treatment of Alzheimer's disease using biological therapy, such as stem cells [36] or platelet-rich plasma [37], due to their anti-inflammatory effects leading to the suppression of inflammatory markers [38-40].

Conclusion.
High serum lipocalin-2, and TNF-α whereas low serum Fetuin-A levels in the AD patient group may suggest these factors have a role in AD pathogenesis.

Conflict of interest. No potential conflicts of interest are disclosed.

Acknowledgements.
Thanks to Tikrit University of Dentistry College for support of this study, Tikrit, Iraq.

REFERENCES